On the chromatin structure of the amplified, transcriptionally active gene for dihydrofolate reductase in mouse cells.

نویسندگان

  • J Barsoum
  • L Levinger
  • A Varshavsky
چکیده

The method for two-dimensional hybridization mapping of nucleosomes (Levinger, L., Barsoum, J., and Varshavsky, A. (1981) J. Mol. Biol. 146, 287-304) was used to analyze chromatin structure of the gene for dihydrofolate reductase (DHF reductase; 5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase (EC 1.5.1.3)) in L5178Y-R mouse cells. The DHF reductase gene in these cells is amplified about 350-fold as a result of selection for resistance to methotrexate. Dramatic overproduction of DHF reductase mRNA in L5178Y-R cells suggests that most of the DHF reductase genes in these cells are transcribed. We report that all major mononucleosomal species resolvable by two-dimensional fractionation are detected by both DHF reductase- and satellite DNA-specific hybridization probes. Although the DHF reductase and satellite hybridization patterns differ somewhat from each other and from the total mononucleosomal pattern, their overall similarity is very high. In particular, no large differences in the abundance of mononucleosomes containing high mobility group non-histone proteins (HMG) 14 and 17 are seen between the DHF reductase and satellite chromatin regions under a wide variety of conditions for chromatin isolation, digestion, and fractionation. Possible interpretations of the apparent lack of selectivity of HMG-chromatin interactions in this system are discussed. We also found that the amplified DHF reductase genes possess a wide range of nucleosomal repeat lengths close to that in the bulk chromatin. In contrast, the range of nucleosomal repeat lengths in the satellite chromatin is much narrower than in both DHF reductase and bulk chromatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatin organization in the homogeneously staining regions of a methotrexate-resistant mouse cell line: interspersion of inactive and active chromatin domains distinguished by acetylation of histone H4.

We have analyzed the organization of the homogeneously staining regions (HSRs) in chromosomes from a methotrexate-resistant mouse melanoma cell line. Fluorescence in situ hybridization techniques were used to localize satellite DNA sequences and the amplified copies of the dihydrofolate reductase (DHFR) gene that confer drug-resistance, in combination with immunofluorescence using antibody prob...

متن کامل

Loss of unstably amplified dihydrofolate reductase genes from mouse cells is greatly accelerated by hydroxyurea.

Previous work has shown that mammalian cells that carry unstably amplified genes for dihydrofolate reductase (DHFR) gradually lose the amplified DHFR genes when grown in the absence of the DHFR inhibitor methotrexate (MTX). Unstably amplified genes occur on small acentric chromosomes called double minutes (DMs) or even smaller chromatin fragments, in contrast to stably amplified genes, which re...

متن کامل

Genetic mutations in 57 and 58 codons gene of Plasmodium vivax dihydrofolate reductase

Introduction: The use of Sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is not common in most of malarious areas because of sensivity of this parasite to chloroquine. But, Plasmodium vivax isolates are exposed to SP because of mixed infection with P.falciparum and this subject has lead to emergence of mutations in P.vdhfr gene. As Plasmodium vivax is the most prevalent specie...

متن کامل

Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines.

We studied the loss and stabilization of dihydrofolate reductase genes in clones of a methotrexate-resistant murine S-180 cell line. These cells contained multiple copies of the dihydrofolate reductase gene which were associated with double minute chromosomes. The growth rate of these cells in the absence of methotrexate was inversely related to the degree of gene amplification (number of doubl...

متن کامل

Effects of genomic context and chromatin structure on transcription-coupled and global genomic repair in mammalian cells.

It has been long recognized that in mammalian cells, DNA damage is preferentially repaired in the transcribed strand of transcriptionally active genes. However, recently, we found that in Chinese hamster ovary (CHO) cells, UV-induced cyclobutane pyrimidine dimers (CPDs) are preferentially repaired in both the transcribed and the non-transcribed strand of exon 1 of the dihydrofolate reductase (D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 257 9  شماره 

صفحات  -

تاریخ انتشار 1982